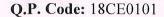

Q.P. Code: 18CE0101

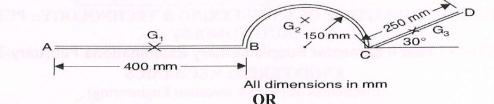
Reg. 1	No:	3			ni chi	202.21	best	and the	1011-	-24:8	rbio	<u>de la p</u> ito		
	SID	DHARTI	I INS	ГІТ	TE O	FEN	GINE	ERIN	G&	TECH	INOL	OGY:: F	UTTUR	
						(AU	TON	JOMOL	JS)					
	В.	Tech I Y	ear II s	Seme	ester	Supp	oleme	entary	Exa	minat	tions	Februar	y-2022	
					ENG	INEE	RINO	G ME	CHAN	ICS				
			(Elect	ronics	and (Comm	unicat	ion Er	nginee	ring)			
Time: 3 hours Max. Marks: 6										Marks: 6	0			
							<u>P</u> .	ART-	4					
				(A	nswe	r all tl	ne Que	estions	5 x 2	= 10	Marks)		
1	a	a Define Equilibrium and write its equations.												
	b Explain the term Angle of Repose.										2M			
	c Differentiate Centroid and Centre of gravity.												2M	
	d State Parallel Axis Theorem.													2M
	e	What is a	cantil	ever t	russ?]	How	will yo	ou find	l out it	s reac	tions?			2M
								ART-						
				(Answe	er all	Five U	Jnits 5	x 10 =	= 50 N	/arks)			
				Ì			τ	JNIT-			,			
2	a	State and	prove	paral	lelogra	am la	w of f	orces.						5M

- **b** The resultant of the two forces, when they act at an angle of 60° is 14 N. If the same **5M** forces are acting at right angles, their resultant is $\sqrt{137}$ N. Determine the magnitude of the two forces.
 - OR
- 3 A gusset plate of roof truss is subjected to forces as shown in Fig. Determine the 10M magnitude of the resultant force and its orientation measured counter clockwise from the positive x-axis.



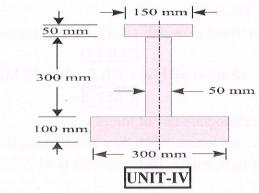
- **a** Explain Cone of Friction with a neat sketch.
 - **b** Find the least force required to drag a body of weight 'W' placed on a rough inclined plane having inclination ' α ' to the horizontal. The force is applied to the body in such a way that it makes an angle ' Θ ' to the inclined plane and the body is on the point of motion up the plane.

OR


5 A ladder 5 meters long rests on a horizontal ground and leans against a smooth vertical 10M wall at an angle 70° with the horizontal. The weight of the ladder is 900 N and acts at its middle. The ladder is at the point of sliding, when a man weighing 750 N stands on a rung 1.5 meter from the bottom of the ladder. Calculate the coefficient of friction between the ladder and the floor.

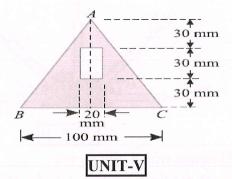
5M

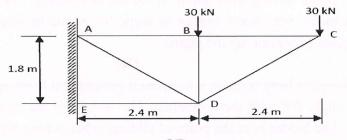
UNIT-III


6 Locate the centroid of the uniform wire bent as shown in Fig.

7 An I-section as shown in Fig. has the following dimensions in mm units:

Bottom flange = 300×100 Top flange = 150×50 Web = 300×50 Determine mathematically


Determine mathematically the position of center of gravity of the section.


8 Prove the parallel axis theorem in the determination of moment of inertia of areas with 10M the help of a neat sketch.

OR

9 A rectangular hole is made in a triangular section as shown in Fig. Determine the **10M** moment of inertia of the section about X-X axis passing through its center of gravity and the base BC.

10 Find the forces in the members of a truss as shown in fig.

Explain the procedure to find forces in members of truss by using method of sections.
10M
END

Page 2 of 2

10M

R18

10M

10M